The finite volume particle method for flows with moving walls

Nathan J. Quinlan

Mechanical and Biomedical Engineering
National University of Ireland, Galway

5th SPHERIC workshop
Manchester, 2010
Motivation: biomedical fluid dynamics

Mechanical heart valve
Re ≈ 6000

Bellofiore et al., 2010
The lineage of FVPM

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hietel, Steiner,</td>
<td>2000</td>
<td>A finite-volume particle method for compressible flows</td>
</tr>
<tr>
<td>Struckmeier</td>
<td></td>
<td>2D, 1st order</td>
</tr>
<tr>
<td>Junk</td>
<td>2001</td>
<td>Do finite volume methods need a mesh?</td>
</tr>
<tr>
<td>Ismagilov</td>
<td>2005</td>
<td>Smooth volume integral method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1D with MUSCL</td>
</tr>
<tr>
<td>Keck, Hietel</td>
<td>2005</td>
<td>Incompressible flow</td>
</tr>
<tr>
<td>Nestor et al.</td>
<td>2008</td>
<td>2D with MUSCL, viscous flows</td>
</tr>
<tr>
<td>Nestor, Quinlan</td>
<td>2009</td>
<td>Incompressible, moving body</td>
</tr>
</tbody>
</table>
The finite volume particle method

Conservation law: \(\frac{\partial U}{\partial t} + \nabla \cdot F(U) = 0 \)

Introduce a compactly supported test function \(\psi_i(x) \):

Weak form:

\[
\int_{\Omega} \psi_i \frac{\partial U}{\partial t} \, dx + \int_{\Omega} \psi_i \nabla \cdot F(U) \, dx = 0
\]

\[
\int_{\Omega} \psi_i \frac{\partial U}{\partial t} \, dx - \int_{\Omega} \nabla \psi_i \cdot F(U) \, dx = 0
\]
Choice of test function and support volume

\[\int_{\Omega} \psi_i \frac{\partial U}{\partial t} \, dx - \int_{\Omega} \nabla \psi_i \cdot F(U) \, dx = 0 \]

\[\psi_i(x) = \begin{cases}
1 & x \in \Omega_i \\
0 & \text{otherwise}
\end{cases} \]

→ finite volume method
Choice of test function and support volume

\[
\int_{\Omega} \psi_i \frac{\partial U}{\partial t} \, dx - \int_{\Omega} \nabla \psi_i \cdot F(U) \, dx = 0
\]

\[
\psi_i(x) = \frac{W_i(x)}{\sum_k W_k(x)}
\]

where \(W_i(x) = 0 \) for \(x \notin \Omega_i \)

\rightarrow \text{finite volume particle method}
Interpretation in terms of pair interactions

\[
\int_{\Omega} \psi_i \frac{\partial U}{\partial t} \, dx - \int_{\Omega} \nabla \psi_i \cdot F(U) \, dx = 0
\]

\[
\sum_{j} \frac{W_i(x) \nabla W_j(x) - W_j(x) \nabla W_i(x)}{\left(\sum_k W_k(x) \right)^2} = 0
\]

\[
\int_{\Omega} \psi_i \frac{\partial U}{\partial t} \, dx - \sum_{j} \int_{\Omega} (\gamma_{ij} - \gamma_{ji}) \cdot F(U) \, dx = 0
\]
3 approximations in FVPM, as in finite volume

1. Replace the weighted volume average of U with a "particle" value

$$\frac{d}{dt} \int_{\Omega} \psi_i U d\mathbf{x} - \sum_{j} \int_{\Omega} (\gamma_{ij} - \gamma_{ji}) \cdot \mathbf{F}(U) d\mathbf{x} = 0$$

2. Represent $\mathbf{F}(U(x,t))$ with a single value for the overlap region

$$\frac{d}{dt} (V_i U_i) - \sum_{j} \beta_{ij} F_{ij} = 0$$

where

$$V_i = \int_{\Omega} \psi_i d\mathbf{x}$$

3. Reconstruct U_i, U_j at the interface for the Riemann problem

$$F_{ij} \equiv F(U_i, U_j)$$
Analogy with mesh finite volume method

FVM
\[
\frac{d}{dt}(V_i U_i) - \sum_j A_{ij} \cdot (F_{ij} + \dot{x}_{ij} U_{ij}) = 0
\]

FVPM
\[
\frac{d}{dt}(V_i U_i) - \sum_j \beta_{ij} \cdot (F_{ij} + \dot{x}_{ij} U_{ij}) = 0
\]
The particle interaction vector

\[\beta_{ij} = \int \frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k(x) \right)^2} \, dx \]

W(x) is any kernel with compact support

2 properties of \(\beta_{ij} \)

\[\beta_{ij} = -\beta_{ij} \quad \text{symmetry} \Rightarrow \text{exact conservation} \]

\[\sum_j \beta_{ij} = 0 \quad \text{the particle volume is “closed”} \Rightarrow \text{zero-order consistency} \]

The mesh finite volume method is a special case of FVPM.

(Junk, 2003)
\[
\frac{d}{dt} (V_i U_i) - 2V_i \sum_j V_j G(U_i, U_j) \cdot \nabla W_i'(x_j) = 0
\]
Vila (1999)

Choose \(W' \) with double the support radius of \(W \) ⇒

\[
W_i'(x_j) = W_i(x_{ij})
\]

\[
\nabla W_i'(x_j) = \frac{1}{2} \nabla W_i(x_{ij})
\]
Relationship to ALE-SPH

Shepard-normalised RSPH kernel: \(\tilde{W}'_i(x) = \frac{W'_i(x)}{\sum_k W'_k(x)V_k} \)

Approximate relationship: \(\nabla \tilde{W}'_i(x_j) \approx \frac{1}{2} \nabla \tilde{W}_i(x_{ij}) \)

\[
\nabla \tilde{W}'_i(x_j) = \sum_j \left[\frac{W'_i \nabla W'_j - W'_j \nabla W'_i}{\left(\sum_k W'_k \right)^2} V \right]_{x = x_j} \\
\approx \frac{1}{2} \sum_j \left[\frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k \right)^2} V \right]_{x = \bar{x}_{ij}}
\]

(if \(V_i = V_j = V \))
Relationship to ALE-SPH

ALE-SPH approximates
\[
\frac{d}{dt} (V_i U_i) - \sum_j G(U_i, U_j) \cdot V_i \left[\frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k \right)^2} \right]_{x=x_{ij}} = 0
\]

FVPM is
\[
\frac{d}{dt} (V_i U_i) - \sum_j G(U_i, U_j) \cdot \int_{\Omega_i \cap \Omega_j} \frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k \right)^2} \, dx = 0
\]

overlap volume \(\cong\) material volume
\(\Rightarrow\) RSPH \(\cong\) FVPM with a single-point approximation to \(\beta_{ij}\)
A continuum from SPH to finite volume?

\[
\text{SPH} \quad -\left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla W_{ij} V_j
\]

\[
\text{ALE-SPH} \quad -2V_i V_j \nabla W_{ij} F(U_i, U_j)
\]

\[
\text{FVPM} \quad -\beta_{ij} F(U_i, U_j)
\]

finite volume \quad -A_{ij} F(U_i, U_j)
Higher-order spatial accuracy by MUSCL

- Evaluate gradients at particle barycentres using (corrected) SPH approximation

- Reconstruct U_L and U_R on both sides of interface

- Compute approximate numerical flux $F(U_L, U_R)$
Taylor-Green flow at Re = 100, Lagrangian
Randomised initialsation, Lagrangian
Taylor-Green, Re = 100, corrected Lagrangian
Taylor-Green flow with rogue particle
Boundary conditions

Particle support is truncated at boundary.

Compute boundary interaction vector directly…

\[\beta_i^b = \int \frac{W_i}{\sum_k W_k(x)} \mathbf{n} d\eta \]

…or by enforcing

\[\sum_j \beta_{ij} + \beta_i^b = 0 \]
“Complex” geometry – Reₜ = 100
SPHERIC benchmark 6: moving square

FVPM

Level set (Colagrossi)
SPHERIC benchmark 6: moving square

![Graph showing Cd vs. Time for different conditions. The graph includes lines for FVPM and REF, with different colors representing pressure and viscous effects.]
Correction of numerical β_{ij}

$$\beta_{ij} = \int \frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k(x) \right)^2} \, dx$$

Numerical integration is necessary.
Typically 6×6 quadrature points.

Correction options
Self-flux (Teleaga and Struckmeier, 2008)
- Preserves uniform states
- violates conservation

Pairwise shifting (Hietel and Keck, 2003)
- Restores conservation
- Errors are shifted to neighbouring particles
Computation time

- neighbour search: <1%
- flux: 4%
- gradients: 2%
- particle update: 2%
- motion correction: <1%

\[\beta_{ij} \quad 74\% \]

- barycentres: 14%
Exact (and fast) evaluation of β_{ij}

Choose the simplest possible kernel

$$W_i(x) = \begin{cases} 1 & x \in \Omega_i \\ 0 & \text{otherwise} \end{cases}$$

$$\beta_{ij} = \int \frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k(x) \right)^2} \, d x$$

$\nabla W_i = 0$ everywhere except on boundary of i

Integration over $\Omega_i \cap \Omega_j$ reduces to integration along a curve
Smooth kernel functions

\[\beta_{ij} = \int \frac{W_i \nabla W_j - W_j \nabla W_i}{\left(\sum_k W_k(x) \right)^2} \, dx \]
Top-hat kernel functions

\[W(x) \]

\[\Sigma W(x) \]

\[\frac{W(x)}{\Sigma W(x)} \]
Non-overlapping top-hats = mesh finite volume
Evaluation of β_{ij} with overlap top-hat kernel

\[
\int \frac{W_j \nabla W_i}{\left(\sum_k W_k(x) \right)^2} \, d\mathbf{x} = \int \frac{W_j \nabla W_i}{N(x)^2} \, d\mathbf{x} = \int \left(\frac{1}{N^{-}(x)} - \frac{1}{N^{+}(x)} \right) \mathbf{n} \, d\mathbf{s}
\]
Comparison of integration methods

Taylor-Green flow
Re = 100, Eulerian particles
Comparison of integration methods

Taylor-Green flow
Re = 100, nearly Lagrangian particles
Comparison of integration methods

Taylor-Green flow
Re = 100, nearly Lagrangian particles
Comparison of integration methods

Taylor-Green flow
Re = 100, nearly Lagrangian particles
Kernels for FVPM: summary
Exact β_{ij} enables free-surface modelling

SPHERIC benchmark 5

$vectors: - \sum_j \beta_{ij}$

$t = 0.343\ s$ experiment
(Janosi et al., 2004)
Vortex-induced vibration

\[\text{Re}_d = 100 \]
Vortex-induced vibration

\[U_r = U_\infty / (f_n d) \]
Particle motion schemes

stationary

fixed to cylinder

interpolated

stationary

(5.5)d

7d

7d
Results
Results
Conclusions

- FVPM is closely linked to Riemann SPH
- FVPM gives robust, simple boundary treatments
- Exact interaction vectors yield $3 \times$ speedup
- Validated for bodies with prescribed and free motion

Future work

- Control of particle motion and distribution is critical
- Extension to 3D
Acknowledgements

Dr. Marty Lastiwka
Mihai Basa
Dr. Ruairi Nestor
Rory Sweeney
Dr. Libor Lobovský

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 225967 “NextMuSE”.

Irish Research Council for Science, Engineering & Technology
Investing in People and Ideas

NUI Galway
OÉ Gaillimh